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ABSTRACT
Multiprocessor environment is used for processor intensive real-time applications, where tasks
are assigned to processor subject to some pre-defined criteria such as CPU load. Conventionally,
real-time systems are paying attention on periodic task models, in which tasks are released at
regular time periods. On the other hand, with maturity of multiprocessor structural design, today
most real-time systems function in dynamic environment where human activities (aperiodic tasks)
are predictable. Aperiodic tasks are to be completed as soon as possible. Consequently the
priority assigned to such aperiodic tasks ought to be higher than those of periodic tasks. In
distinction to its counter part the field of scheduling hybrid tasks i.e. periodic and aperiodic tasks
on multiprocessor systems, still remains relatively unexplored. Similarly, higher power
consumption issues arise as a challenge associated with such systems. Power aware scheduling
is the cutting edge technique for reducing power constraints of multiprocessor systems. These
systems generally remain under utilized thus becomes an ideal candidate for power aware
scheduling. Recently a lot of work has been done on minimizing the energy requirement of
processors. As a drawback of reducing power consumption of such systems, its response time is
increased unreasonably, hence degrades the overall performance of the systems. In the prior
work, higher importance is given to energy reduction while minimizing the response time of hybrid
tasks is unnoticed.  In this work we consider the importance of response time while reducing the
power expenditure and utilization of the system. We propose a solution that reduces the power
utilization and use of a multiprocessor system while the response time of tasks is kept with in a
bound time. We assign aperiodic tasks to the processor that is under utilized for two reasons.
1. The underutilized processor has enough room to complete the aperiodic task with smallest

possible time window and
2. There is a potential for running the system with low possible speed in addition to meeting

deadline              constraints.
The above solutions are obtained through mathematical foundation and experimental

result supports our theoretical framework.
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I. INTRODUCTION & CONCEPTS:

Multiprocessor can be defined as a computer system having more than one processor,
each one sharing system main memory & peripherals, to concurrently process
programs. Hence the scheduling algorithms optimal on uniprocessor machines are not
subject to be optimal on multiprocessor machines. So for multiprocessors are
concerned, we use different scheduling algorithms. According to the law of Gordon
Moore which states that the number of transistors in microprocessors would double
every year [1]. But the advances in microprocessors are not face with battery power, and
the battery capacity is tripled since 1990’s [2, 3]. Therefore there is a need for applying
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energy efficient scheduling techniques that has become a major design consideration in
realtime computing environment. There are many applications where aperiodic tasks are
executed, as an outcome of exterior events. The time in which these proceedings take
place are not controlled in reality by an application designer. For example, when
keyboard buttons are pressed.
When there are periodic and aperiodic tasks in the given system, our goal is to reduce
the response time of aperiodic tasks in such a manner that all the periodic tasks are still
optimal & schedulable. The most cut down technique is to give out available time slots,
that are left unused by the periodic tasks, to aperiodic tasks. The background scheduling
is used to schedule aperiodic tasks which is quite simple; however using background
scheduling the desired response is never obtained. To reduce the response time of
aperiodic tasks, we use the concept of aperiodic server. The aperiodic server or total
bandwidth server services aperiodic requests as soon as possible [4]. The aperiodic
server is consisting of a period and fixed execution time called server capacity and is
scheduled with the same algorithm that is used for the periodic tasks.
There are two types of scheduling techniques for multiprocessors including

 Partitioned scheduling and
 Global scheduling.

In partitioned scheduling, each task is assigned to a specific processor and then it is
executed on that processor without migration. These processors are then scheduled
independently and separately. This reduces the multiprocessor scheduling into a set of
uniprocessor scheduling. With this scheduling we can use an optimal uniprocessor
scheduling algorithm for multiprocessor systems. In partitioned scheduling the run time
overhead is low as compared to global scheduling, because in partitioning technique the
task does not migrate to other processors. But there is a shortcoming in schedulability
bounds as the deadline to be missed if the total processor utilization exceeds (βm +1)
(β+1), where β= 1/α and α is a maximum utilization of individual tasks [5]. Let α =1 and
m→∞ then the processor utilization is bound by 50%. We use partitioning method in our
work because the overhead is low so the context switching and energy consumption
would be reduced. The alternative is the global scheduling, in which all the tasks are
stored in a single priority queue. The scheduler selects the task having the high priority
for execution. In global scheduling the tasks are not fasten to a particular processor and
it can be executed on any processor. The optimal uniprocessor scheduling algorithm
(EDF, RM etc) gives low utilization on multiprocessors. The global scheduling is best in
the worst case schedulability. All the task sets are schedulable, if the processor
utilization is less than or equal to 100%. But the number of context switching and
migration is a problem. The worst case processor utilization is less than 50%.
In multiprocessors the main issue is heating and energy. Our goal is to minimize the
energy consumption so that the cooling cost will be reduced. We are scheduling periodic
and aperiodic tasks such that the load is balanced among different processors and the
energy consumption is reduced. Runtime power reduction mechanisms can reduce the
energy expenditure. For energy reduction we can use the DVS in latest processors. It
means that power is a linear function of frequency i.e. f and a quadratic function of the

voltage i.e. V given by (
2fVp  ). The voltage adjustment at an instant of time is

called DVS, which is an effective way for power saving in current systems [2].
In addition to saving energy, another advantage of having reduced power consumption
is lower cooling cost of the multiprocessing environment (web farms, clusters etc).
In recent processors the relationship between frequency f and power p gives foundation
to Dynamic Voltage Scaling

E Pt (1)



Where E is energy consumed, t is time taken and P is power consumed. The average
power dissipation in processor is:

avg capt l stdby scP P P P P    (2)

Where , , ,capt l stdbyP P P and scP is capacitance, leakage, standby and short circuit power.

The ,l stdbyP P and scP are important but they are least important as compared to captP . So

we will not consider ,l stdbyP P , and scP . So the captP is equal to:
2

capt dP CV f (3)

Where  is the transition activity dependant parameter, C, dV and f is switched
capacitance, supply voltage, and clock frequency. Equation (3) shows that the supply
voltage dV is quadratic as compared to clock frequency f ; furthermore it also shows
that lowering the supply voltage would be the most efficient way to reduce the power
consumption. But when dV is reduced then the circuit delay dt would be increased:
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Where delayt is threshold voltage and m is a constant which will depend on gate size and

capacitance. As from equation (4) the f and dt are inversely proportional, so it would
mean that the energy expenditure would be reduced in CMOS devices at the expense of
performance delay. The frequency f is:
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Equation (5) shows that the clock frequency is directly proportional to supply voltage. If
we would consider ,captP P then equation (3) can be written as:

2P CV f (6)
Equation (6) shows that when the clock speed f and voltage is changed then it would
effect power consumption linearly and quadratically, respectively.
We use partition-based system where the workload is partitioned among processors. We
derive results for a single processor and then extended it to multiprocessors. We would
schedule mixed tasks (periodic and aperiodic tasks) with EDF scheduling algorithm, and
those tasks, which have the earliest deadline, would have the highest priority. Our
processor would have the discrete speed and voltage levels where 1 2 ...... nv v v  
and 1 2 max........f f f  . We would consider the overhead of scheduling algorithm and
voltage transition insignificant. The power spending by a processor with the speed f is

given by ( )g f and the energy consumption during the interval 1 2[ , ]t t is 2

1

( ( ))
t

t
g f t dt [3].

II. RELATED WORK & EXISTING TECHNIQUES:
In this section we discuss some existing mechanisms and techniques.

A. Real time systems are those systems that would give us results in a given time
period. When a computer, that controls a device, sensor would give the data at
regular time period and the computer responds by sending signals to an actuator,



there must be a time bound in which the computer must respond to it. The ability of
the system to respond with in a given time period depends on its capacity. If the
system is unable to fulfill the demands, then we say that the system has inadequate
resources. The system with limitless resources can fulfill the demands within the
given time period. When the system is unable to respond within a given time period, it
has different consequences i.e. there may be no upshot at all, or it may be minor or it
may be catastrophic. The real time system is very simple like microcontroller or it may
be complex like flight control system. Real time system examples are process control
system, flight control system, intelligent highway systems, robotics, and high speed
media communication system [6, 7].

B. Scheduling may be defined as the act of assigning resources to tasks. The
scheduling can be applied to the tasks by defining the start time, so that no more than
one task can request for a resource at that specific time, this is called static
scheduling [xP90, xu93, foh94]. Other type of scheduling would be to assign priorities
to tasks and then execute the task with the highest priority when there are more
requests than the number of resources then the scheduling decision would be made.
The priority scheduling can meet all deadlines where the time table schedule cannot.
This situation occurs when the tasks that wants to execute is not known is advance or
design, and the tasks execute when event occur.

C. Global Scheduling Algorithms, Such algorithms store the tasks in one queue that is
mutual and common amongst all processing units. All tasks in the queue are
maintained and are allocated with their specific priority. Suppose there are more than
one task, then the task with the highest priority is selected from the queue and is
executed on the specific processor using preemption and migration technique [21,
28]. Each processing unit preserves a status table that designates which tasks have
previously committed to run. Additionally, each processing unit has a table that
indicates how many processors have spare computational power. The time axis is
split into slots, and these slots are of some fixed duration, and each processing unit
on a regular basis sends information to its counterparts about the next slot that is
free.

D. When the processor is overloaded it checks its surplus information and selects the
processor that is most appropriate to complete the task with in its time period.
However, it is possible that the surplus information is out of date and the selected
processor can not execute the task. This problem can be solved by sending the task
to the selected processor at the same time the originating processor ask from lightly
loaded processor that how quickly they can execute the task. Then these responds
are sent to the selected processing unit. When the selected processing unit is unable
to execute the task with in its time period, then it can review the responds that which
other processing unit is able to execute the task within its time period and then
transfer the task to that processor.

E. Partitioning Scheduling Algorithms, Such algorithms divide the tasks in such a way
that many task sets are created and then each task set is executed and schedulable
on a particular processor. The tasks cannot migrate from one processor to the other,
so the multiprocessor scheduling dilemma is altered into many uniprocessor
scheduling dilemmas [21, 28]. In partitioning method several task sets are created
and each task set is contained in different queues associated with each processor.
As the multiprocessor scheduling problem is changed into many uniprocessor



scheduling problem so we can use an optimal uniprocessor scheduling algorithm to
schedule the tasks. Global scheduling strategies have many shortcomings over
partitioning scheduling strategies. For example, Partitioning typically has a little
scheduling overhead as put side by side to global scheduling, as tasks do not require
to migrate across processing units. In addition, partitioning scheduling strategies
divide a multiprocessing unit scheduling problem to a set of uniprocessor scheduling
problem and then some optimal uniprocessor scheduling algorithms can be used.
On the other hand, partitioning scheduling strategy has two disadvantages over
global scheduling. First, to find the optimal handing over of jobs to the processing
units is a bin-packing problem that is an NP-complete problem. Therefore, jobs are
frequently partitioned using non-optimal heuristics. Secondly [13], there exists tasks
that are schedulable if they exist non-partitioned. In spite all this partitioning
strategies are extensively used. Additionally the hybrid of partitioning / global
scheduling algorithm can be used. For example, at any instant of time the task is
allocated to a single processing unit and is allowed to migrate as well.

III. EXISTING PROBLEM:

In recent times it is realized that there is a need for energy reduction in processors, a lot
of work has been done on minimizing the system energy consumption. As a drawback of
reducing energy consumption of the system, its response time is increased which
degrades the overall performance of the systems. In prior work, higher importance is
given to energy reduction and reducing response time of aperiodic tasks remains
unnoticed.
We consider the importance of response time while reducing the power consumption of
the multiprocessor system. With mathematical foundation we proposed a solution that
reduces the power consumption of a multiprocessor system while the response time of
tasks is kept within bound.

IV. PROPOSED SOLUTION:

Multiprocessor environment is used for processor intensive real-time applications, where
tasks are assigned to processor subject to some pre-defined criteria such as CPU load
etc. Traditionally, the focus of real-time systems are periodic task model where the
release time of tasks are known, however with the advancement of multiprocessor
design, the real-time systems are also using aperiodic tasks where the release time are
not known in advance. The aperiodic tasks should be completed as quickly as possible;
therefore the priority of aperiodic tasks must be greater than periodic tasks. In contrast to
its counter part i.e. uniprocessor systems, the field of scheduling mixed tasks (periodic
and aperiodic) on multiprocessor system still remains unexplored. Similarly, higher
power consumption issues arise as a challenge associated with such systems. Power
aware scheduling is the culling edge technique for reducing power constraints of
multiprocessor systems. These systems generally remain under utilized thus becomes
an ideal candidate for power aware scheduling.

In recent times it is realized there is a need for energy reduction in processors, a
lot of work has been done on minimizing the energy reduction. As a drawback of
reducing energy consumption of the system, its response time is increased, hence
degrades the overall performance of the systems. In prior work, higher importance is
given to energy reduction and reducing response time of hybrid tasks is unnoticed.



We consider the importance of response time also while the energy reduction is
achieved. In our work we propose a solution that reduces the power consumption of a
multiprocessor system while the response time of tasks is kept within bound.
Mixed workload scheduling (Periodic and aperiodic Tasks):

A. PERIODIC TASKS

Periodic tasks are those types of tasks that would appear after a fixed interval of
time. A Periodic task set 1 2{ , ,....., }nT T T T that arrive at time t = 0, where every task iT

has Two parameters ( , )i ip c , where ip is the time period and ic is WCET of the task.
• All tasks are independent and preemptable.
• The task iT has relative deadline iD is equal to ip .
• The released instance ,i jR of task iT is called the j th job of task iT . The ,i jR release

Time would be ( 1)ip j  .
• The task iT WCET would be known in advance.

B. APERIODIC TASKS

Aperiodic tasks are those tasks that appear at any time and we doesn’t know that when
these tasks would reappear. The Aperiodic jobs { 1,2........m m  } have two parameters
( ,r e ), where r is the release time of job and not known in advance, e is the WCET of m .
We considering ‘ r ’ as the arrival time and ‘ e ’ as the execution time, the aperiodic load
would be e r  . In our work we would change the load up to the maximum level. The
aperiodic tasks would be run on a special type of server called Total Bandwidth Server.
The TBS [4] has the capacity s s su c p where sc is the execution budget and sp is
period of the server. The m th aperiodic job m , having the execution time me and
arrival time mr ,  is given the deadline:

1max( , ) m
m m m

s

e
d r d

u  (7)

Where me is WCET. So Equation (7) shows that when we have higher su then md
would be earlier.

SCHEDULING MIXED WORKLOAD WITH M PROCESSORS:
According to EDF, a task set is schedulable iff

1

1
n

i
tot

i i

c
u

p

  (8)

Where, totu is total system utilization, ic is execution time and ip is the time period.
With periodic tasks we have also aperiodic tasks so we must also consider it with
periodic tasks, such that the utilization of periodic and aperiodic tasks must be less than
or equal to one.

1p su u  (9)



In Equation (3) we have 0 , 1p su u  and 0 1p su u   , at frequency ( 1mf f f  in
this case), as f =1 so we say that this approach is not a DVS approach because system
is running at full speed.
Equation 9 shows that the system is running at full speed and gives us the lowest
system utilization. So all the tasks running at their WCET, so the system utilization is far
less than 1. It means that the processor is doing nothing for most of the time. It also
means that the energy is wasted during the idle time intervals, as the processor is
running at their full speed. The energy consumption can be reduced by lowering the
speed of the processor, but lowering the speed would take the task longer to complete
and the response time of the tasks would be increased. According to [39], the frequency
component is added to Equation (9) as:

i
p s

m

f
u u

f
  (10)

Where mf is maximum speed of the processor and if is the suitable speed so
that the task set is feasible schedulable. We represent the initial speed of the processor

if by staticf , and we denote i mf f by b .

RESPONSE TIME CONSTRAINT:

As Equation (10) gives us the lowest frequency, so that the mixed tasks are feasibly
schedulable but the execution time are scaled by a factor of 1 b . When we decrease
the frequency then the voltage consumption will be reduced, and according to
Equation 2

cmosp v f , when we reduce the speed then the power consumption would be
reduced, but the response time of the task would be increased and the system
performance would be degrade. When we run an application then the energy
requirement at time t would be .E p t . So energy consumption would be 2E v .
The tasks are running at lower frequency b , so the execution times of the tasks are
increased. The deadline of TBS [40] would become:

1( ) max( , )
.
m

m b m m
s b

e
d r d

u


  (11)

The deadline for TBS is delayed as

1 1

1
( ) max( , ) max( , ) ( 1)

.
m m m

m b m m m m m
s b s s b

e e e
d d r d r d

u u u


        
(12)

It is clear from Equation (6) that the deadline is increased, so the response time of
aperiodic tasks would also be increased. The aperiodic tasks are very less in real time
applications as compared to periodic tasks such as java based videophone, which runs
the garbage collector (aperiodic task) almost every 600ms for every 3.732ms [40]. In
those systems where aperiodic tasks came less frequently as compared to periodic
tasks, and those aperiodic tasks need quick response then one solution is Equation (6)
in which we run the task at full speed. But there is a disadvantage as the curve of energy
and voltage is convex in nature [41]. When we increase the voltage then the power
consumption would be increased quadratically. Equation (6) shows that we decrease the
scheduling priority and the response time of aperiodic tasks is increased. We consider
that when the response time of aperiodic task is smaller than sp (worst case), then there
is no need of frequency scaling. To avoid the performance degradation of aperiodic
tasks, we restrict this deadline delay. As it is showed earlier that the TBS has to execute



aperiodic jobs for ic intervals during any interval of length sp In our work, when we apply
DVS then this delay must be less than or equal to sp i.e. ( )m b m sd d p   . As we have
a range of speed levels ( 1 2 ............. mf f f  ), authors in [42] gives a technique to find
suitable frequency kf for aperiodic job m .

1.
(1 )s s

b
m

p u

e
   (13)

In case ( ( )m b m sd d p   ), our algorithm completes aperiodic load before sp . Equation
(13) is for single processor, however, for multiple processors we need to find the b on
all m processors and allocate the aperiodic task m to the processor having lower b .
We would use the partitioning scheduling method for the periodic tasks and global
scheduling method for aperiodic tasks.
The above formulation is valid for a single processor, while the intended purpose of this
work is to accommodate aperiodic tasks on multiprocessor system and make sure
aperiodic jobs completed as soon as possible, and no periodic task sever miss the
deadline. We are using global scheduling mechanism for the aperiodic jobs.
Initially, periodic tasks are assigned to all available processors i.e., periodic load is
uniformly distributed among processors. Also, every processor has a TBS for aperiodic
tasks and it’s very likely that TBS has different capacity on all processors and the larger
capacity it has, the better it would be, because aperiodic job will complete much early as
compare to low capacity TBS.
With our approach, let processor 1 has TBS and the required speed for completing
aperiodic job is obtained with b1 , where subscript 1 points to processor 1.

1
1 )

.
1( 

m

ss
b e

up


The required speed for processor 2 is obtained with:
1

2 )
.

1( 
m

ss
b e

up


Similarly for m-th processor it would be:
1)

.
1( 

m

ss
mb e

up


We get speed for all the processors. Once this step is done, we encounter the solutions:

RUN APERIODIC TASK ON SLOWEST POSSIBLE SPEED:

We determine the lowest possible speed for aperiodic task on all the processors
)....,.........,min( 21 mbbbl   so that it gets completed with the bounded time where

l is the lowest speed of all processors. This solution result in reducing energy
consumption of the over all system, as it runs on lowest speed. However, the response
time of aperiodic task gets large due to the lowest system speed

RUN APERIODIC TASK WITH HIGHEST POSSIBLE SPEED:

This solution gives the maximum available speed for aperiodic task on all the
processors. In other words: ),.......,max( 21 mbbbh   . We find the speed of



aperiodic task on all the processors m,........3,2,1 and then the processor with the
highest possible speed h is selected. This means that the TBS on that
particular processor has largest capacity and can only respect the time constraint
when executed on the h (highest speed) i.e. the processor I needs h (highest)
speed to completed aperioid task within period. As discussed earlier, running a
processor at maximum speed mean consuming maximum system power, which
can not be compromised unnecessarily. In this work, since, we are maintaining a
queue of aperiodic tasks, a particular aperiodic task will be consider for execution
at individual processors and the one which can execute the task with highest
speed is assigned the task. We opt for the first option (Run aperiodic task on slowest
possible speed) because it will result in lower energy consumption and the aperiodic
task will be completed with assigned time window, which is the main contribution of the
work. The proposed technique will make sure to complete the aperiodic task within the
time window and reduce the total power consumption of the multiprocessor system. In
other words, based on ps of all processors, our technique will find the smallest speed l
such that aperiodic task gets completed within a permissible time.

V. IMPLEMENTATION, SIMULATION & RESULTS:
First we produce periodic tasks and calculate their utilization and average values.
Similarly the task set generated is then divided and mapped onto multiprocessors.
Utilization of all tasks are shown and aperiodic tasks are assigned to processors that are
under utilized i.e lesser periodic load is assigned. As a final outcome, response time of
aperiodic task, to frequency of the system and corresponding power consumption is
drawn at the end.

A. SIMULATIONS STUDY
PERIODIC TASKS:

Execution Time Time period       Utilization
20.0000 204.0000 0.0980
30.0000 214.0000 0.1402
14.0000 214.0000 0.0654
17.0000 218.0000 0.0780
27.0000 231.0000 0.1169
18.0000 257.0000 0.0700
29.0000 259.0000 0.1120
27.0000 261.0000 0.1034
25.0000 261.0000 0.0958
21.0000 288.0000 0.0729
4.0000 288.0000 0.0139
30.0000 290.0000 0.1034
5.0000 310.0000 0.0161
13.0000 323.0000 0.0402
1.0000 332.0000 0.0030

3.0000 348.0000 0.0086
27.0000 352.0000 0.0767
24.0000 365.0000 0.0658
30.0000 383.0000 0.0783
2.0000 385.0000 0.0052
14.0000 400.0000 0.0350



29.0000 406.0000 0.0714
9.0000 409.0000 0.0220
10.0000 410.0000 0.0244
22.0000 414.0000 0.0531
19.0000 420.0000 0.0452
2.0000 421.0000 0.0048
18.0000 429.0000 0.0420
9.0000 440.0000 0.0205
19.0000 448.0000 0.0424
29.0000 449.0000 0.0646
4.0000 454.0000 0.0088
27.0000 486.0000 0.0556
6.0000 486.0000 0.0123

Total Utilization =  1.8661
Average  =   0.6220
Tasks Executed on Processor_1 =

Execution Time Time period
20                                            204
30                                            214
14                                            214
17                                            218
27                                            231
18 257
29                                            259
27                                            261

Tasks Executed on Processor_2 =

Execution Time                   Time period
0                                              0
0                                              0
0                                              0
0                                              0
0                                              0
0 0
0                                              0
0                                              0

25                                            261
21                                            288
4 288

30                                            290
5                                             310

13                                            323
1                                             332
3 348

27                                            352
24                                            365
30                                            383
2 385

14                                            400
29                                            406
9                                             409

10                                            410
22 414



19                                            420
2                                             421

Tasks Executed on Processor_3 =

Execution Time                   Time period
0 0
0                                            0
0                                            0
0                                            0
0                                            0
0 0
0                                            0
0                                            0
0                                            0
0                                            0
0 0
0                                            0
0                                            0
0                                            0
0                                            0
0 0
0                                            0
0                                            0
0                                            0
0                                            0
0 0
0                                            0
0                                            0
0                                            0
0                                            0
0 0
0                                            0

18                                           429
9                                            440

19                                           448
29 449
4                                            454

27                                           486
6                                            486

Utilization of Processor_1 =  0.7840
Utilization of Processor_2=    0.8360
Utilization of Processor_3=   0.2461
The less utilized Processor is Processor_3 and it can execute Aperiodic load up to  0.7539

APERIODIC TASKS:

Execution Time   Time period        Utilization
1.0000                670.0000 0.0015
1.0000                666.0000                    0.0015
1.0000                655.0000                    0.0015
2.0000                982.0000                    0.0020
2.0000                952.0000                    0.0021
2.0000                619.0000                    0.0032
3.0000                883.0000                    0.0034



4.0000                749.0000                    0.0053
5.0000                869.0000                    0.0058
5.0000 825.0000                    0.0061
4.0000                616.0000                    0.0065
6.0000                802.0000                    0.0075
8.0000                986.0000                    0.0081
8.0000 923.0000                    0.0087
5.0000                527.0000                    0.0095
8.0000                786.0000                    0.0102
7.0000                651.0000                    0.0108

10.0000               909.0000 0.0110
9.0000                665.0000                    0.0135

11.0000               783.0000                    0.0140
10.0000               681.0000                    0.0147
14.0000               951.0000 0.0147
13.0000               872.0000                    0.0149
11.0000               716.0000                    0.0154
11.0000               667.0000                    0.0165
14.0000               822.0000                    0.0170
12.0000               680.0000                    0.0176
12.0000               675.0000                    0.0178
11.0000               604.0000                    0.0182
10.0000               546.0000                    0.0183
19.0000 974.0000                    0.0195
13.0000               616.0000                    0.0211
19.0000               891.0000                    0.0213
20.0000             933.0000                      0.0214
17.0000             788.0000 0.0216
12.0000             549.0000                      0.0219
12.0000             520.0000                      0.0231
13.0000             557.0000                      0.0233
24.0000             989.0000 0.0243
18.0000             722.0000                      0.0249
21.0000             839.0000                      0.0250
25.0000             998.0000                      0.0251
13.0000             518.0000                      0.0251
22.0000             830.0000                      0.0265
25.0000             934.0000                      0.0268
24.0000             839.0000                      0.0286
20.0000             698.0000                      0.0287
17.0000             591.0000                      0.0288

Aperiodic load =

Columns 1 through 8
0.0015    0.0030    0.0045    0.0066    0.0087    0.0119    0.0153    0.0206

Columns 9 through 16
0.0264    0.0324    0.0389    0.0464    0.0545    0.0632    0.0727 0.0829

Columns 17 through 24
0.0936    0.1046    0.1182    0.1322    0.1469    0.1616    0.1765    0.1919

Columns 25 through 32
0.2084    0.2254    0.2430    0.2608    0.2790    0.2974    0.3169    0.3380

Columns 33 through 40
0.3593    0.3807    0.4023    0.4242    0.4472    0.4706    0.4948    0.5198

Columns 41 through 48
0.5448    0.5698    0.5949    0.6215    0.6482    0.6768    0.7055    0.7342



Response_time =

Columns 1 through 8
0.0001    0.0003    0.0009    0.0009    0.0020    0.0158    0.0195    0.0284

Columns 9 through 16
0.0327    0.0386    0.0525    0.0593    0.0593    0.0617    0.0791    0.0867

Columns 17 through 24
0.0994    0.1023    0.1144    0.1221    0.1337    0.1350    0.1393    0.1496

Columns 25 through 32
0.1617    0.1679    0.1795    0.1913    0.2058    0.2224    0.2229    0.2369

Columns 33 through 40
0.2405    0.2425    0.2500    0.2666    0.2843    0.3005    0.3005    0.3106

Columns 41 through 48
0.3163    0.3163 0.3345    0.3409    0.3433    0.3493    0.3607    0.3761

Response_time_frequency =

Columns 1 through 8
0.0005    0.0013    0.0027    0.0029    0.0044    0.0188    0.0233    0.0331

Columns 9 through 16
0.0385    0.0458    0.0612    0.0698    0.0715    0.0759    0.0954    0.1053

Columns 17 through 24
0.1206    0.1262    0.1413    0.1520    0.1669    0.1717    0.1797    0.1938

Columns 25 through 32
0.2099    0.2203    0.2364    0.2528    0.2720    0.2937    0.2993    0.3187

Columns 33 through 40
0.3279    0.3357    0.3491    0.3718    0.3958    0.4186    0.4251    0.4420

Columns 41 through 48
0.4547    0.4615    0.4867    0.5003    0.5101    0.5237    0.5428    0.5662

Response_static_time =

Columns 1 through 8
0.0001    0.0004    0.0011    0.0013    0.0027    0.0168    0.0212    0.0309

Columns 9 through 16
0.0364    0.0440    0.0597    0.0688    0.0714    0.0770    0.0980    0.1096

Columns 17 through 24
0.1269    0.1351    0.1531    0.1674 0.1863    0.1959    0.2094    0.2295

Columns 25 through 32
0.2523    0.2701    0.2942    0.3192    0.3477    0.3791    0.3955    0.4265

Columns 33 through 40
0.4483    0.4698    0.4981    0.5362    0.5762    0.6157    0.6405    0.6767

Columns 41 through 48
0.7098    0.7387    0.7866    0.8242    0.8595    0.9001    0.9475    1.0000

Maximum_Energy_Consuumed =

Columns 1 through 14
1     1     1     1     1     1     1     1     1     1     1     1     1     1

Columns 15 through 28
1     1     1     1     1     1     1     1     1     1     1     1     1     1

Columns 29 through 42
1     1     1     1     1     1     1     1     1     1     1     1     1     1

Columns 43 through 48
1     1     1     1 1     1



Energy_Required =

Columns 1 through 8
0.0212    0.0424    0.0636    0.0675    0.0887    0.1099    0.1311    0.1522

Columns 9 through 16
0.1734    0.1946    0.2158    0.2370    0.2582    0.2794    0.3006    0.3218

Columns 17 through 24
0.3430    0.3642    0.3854    0.4066    0.4278    0.4490    0.4702    0.4913

Columns 25 through 32
0.5125    0.5337    0.5549    0.5761    0.5973    0.6185    0.6397    0.6609

Columns 33 through 40
0.6821    0.7033    0.7245    0.7457    0.7669    0.7881    0.8093    0.8304

Columns 41 through 48

0.8516    0.8728    0.8940    0.9152    0.9364    0.9576    0.9788    1.0000

Response Time versus Aperiodic load (Case 1)

Energy Consumption Aperiodic load (Case 1)



Response Time versus Aperiodic load (Case 2)

Energy Consumption Aperiodic load  (Case 2)

VI. CONCLUSION & FUTURE WORK:

Recently a lot of efforts are put for energy reduction of processors. As a drawback of
reducing energy consumption of the system, its response time is increased, hence
degrades the overall performance of the systems. In prior work, higher importance is
given to energy reduction and reducing response time of hybrid tasks is unnoticed. We
consider the importance of response time also while the energy reduction is achieved. In
our work we propose a solution that reduces the power consumption of a multiprocessor
system while the response time of tasks is kept within bound. In future the algorithm
can be extended to accomplish and schedule large number of jobs over a huge network
environment like Grid and Cloud Computing.
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